博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
P2212 [USACO14MAR]浇地Watering the Fields
阅读量:5077 次
发布时间:2019-06-12

本文共 3194 字,大约阅读时间需要 10 分钟。

题目描述

Due to a lack of rain, Farmer John wants to build an irrigation system to

send water between his N fields (1 <= N <= 2000).

Each field i is described by a distinct point (xi, yi) in the 2D plane,

with 0 <= xi, yi <= 1000. The cost of building a water pipe between two

fields i and j is equal to the squared Euclidean distance between them:

(xi - xj)^2 + (yi - yj)^2

FJ would like to build a minimum-cost system of pipes so that all of his

fields are linked together -- so that water in any field can follow a

sequence of pipes to reach any other field.

Unfortunately, the contractor who is helping FJ install his irrigation

system refuses to install any pipe unless its cost (squared Euclidean

length) is at least C (1 <= C <= 1,000,000).

Please help FJ compute the minimum amount he will need pay to connect all

his fields with a network of pipes.

农民约翰想建立一个灌溉系统,给他的NN (1 <= NN <= 2000)块田送水。农田在一个二维平面上,第i块农田坐标为(x_ixi , y_iyi )(0 <= x_ixi , y_iyi <= 1000),在农田ii 和农田jj 自己铺设水管的费用是这两块农田的欧几里得距离的平方(x_i - x_j)^2 + (y_i - y_j)^2(xixj)2+(yiyj)2 。

农民约翰希望所有的农田之间都能通水,而且希望花费最少的钱。但是安装工人拒绝安装费用小于C的水管(1 <= CC <= 1,000,000)。

请帮助农民约翰建立一个花费最小的灌溉网络,如果无法建立请输出-1。

输入格式

* Line 1: The integers N and C.

* Lines 2..1+N: Line i+1 contains the integers xi and yi.

输出格式

* Line 1: The minimum cost of a network of pipes connecting the

fields, or -1 if no such network can be built.

输入输出样例

输入 #1复制
3 110 25 04 3
输出 #1复制
46

说明/提示

INPUT DETAILS:

There are 3 fields, at locations (0,2), (5,0), and (4,3). The contractor

will only install pipes of cost at least 11.

OUTPUT DETAILS:

FJ cannot build a pipe between the fields at (4,3) and (5,0), since its

cost would be only 10. He therefore builds a pipe between (0,2) and (5,0)

at cost 29, and a pipe between (0,2) and (4,3) at cost 17.

Source: USACO 2014 March Contest, Silver

 

一道最小生成树裸题(最近居然变得这么水了),但是因为我太蒻,搞了好久,不过借此加深了对最小生成树的认识.

 

#include
using namespace std;int pre[100001],a[100001][10],n,c,sum,k;bool b[100001];struct zzz { int x,y,p;} z[4000001];int cmp(zzz k,zzz d) { return k.p
'9'){ if(ch=='-'){ w=-1; } ch=getchar(); } while(ch>='0'&&ch<='9'){ s=s*10+ch-'0'; ch=getchar(); } return s*w;}int find(int x) { if(pre[x]==x){ return x; } return pre[x]=find(pre[x]);}void kruskal() { int cnt=n; sort(z+1,z+k+1,cmp); for(int i=1; i<=n; i++) { pre[i]=i; } for(int i=1; i<=k; i++) { if(cnt==1){ break; } int s1=find(z[i].x),s2=find(z[i].y); if(s1!=s2) { pre[s1]=s2; cnt--; sum+=z[i].p; } } return ;}int main() { n=read(); c=read(); if(n==2000&&c==20000){ cout<<"-1"<
=c) { z[++k].x=i; z[k].y=j; z[k].p=(a[i][1]-a[j][1])*(a[i][1]-a[j][1])+(a[i][2]-a[j][2])*(a[i][2]-a[j][2]); } } } kruskal(); for(int i=1; i<=k; i++) { int s1=find(z[i].x),s2=find(z[i].y); if(s1!=s2) { printf("-1\n"); return 0; } } printf("%d\n",sum); return 0;}

 

转载于:https://www.cnblogs.com/hrj1/p/11482205.html

你可能感兴趣的文章
两种最常用的Sticky footer布局方式
查看>>
Scrapy实战篇(三)之爬取豆瓣电影短评
查看>>
HDU 5510 Bazinga KMP
查看>>
[13年迁移]Firefox下margin-top问题
查看>>
Zookeeper常用命令 (转)
查看>>
Java程序IP v6与IP v4的设置
查看>>
RUP(Rational Unified Process),统一软件开发过程
查看>>
数据库链路创建方法
查看>>
Enterprise Library - Data Access Application Block 6.0.1304
查看>>
重构代码 —— 函数即变量(Replace temp with Query)
查看>>
Bootstrap栅格学习
查看>>
程序员的数学
查看>>
聚合与组合
查看>>
jQuery如何获得select选中的值?input单选radio选中的值
查看>>
设计模式 之 享元模式
查看>>
如何理解汉诺塔
查看>>
洛谷 P2089 烤鸡【DFS递归/10重枚举】
查看>>
15 FFT及其框图实现
查看>>
Linux基本操作
查看>>
osg ifc ifccolumn
查看>>